
ART
– Allotment Routing Table –

A Fast Free Multibit Trie Based Routing Table

Yoichi Hariguchi

Cisco Systems

170 West Tasman Dr.

San Jose, CA 95134

yoichi@cisco.com

2002/04/12 at 12:44

Abstract
After introduction of the Classless Inter-Domain Routing,
several high speed longest prefix matching route lookup
algorithms were proposed. Among them, it is known
that multibit trie based routing tables, particularly the
techniques called Controlled Prefix Expansion (CPE) and
Smart Multi-Array Routing Table (SMART) have a low and
deterministic search cost of modestly higher memory con-
sumption. Their search cost is typically 3 to 4 routing table
memory accesses for IPv4. However, no one can use them
without licensing since they are patented or patent pend-
ing. This paper presents a new freely reusable multibit trie
based routing table called Allotment Routing Table (ART)
which is as fast as both the CPE and SMART. The IPv4 per-
formance of one ART configuration is 10M lookups/sec for
search, 800K routes/sec for insertion, and 2.04M routes/sec
for deletion on a Pentium III 1GHz PC. This is 16 times in
search, 50% in insertion, 4 times in deletion as fast as the
BSD radix with 3 times more memory consumption; an-
other ART configuration has the performance of more than
8 times in search, 2 times in inseartion, 50% in deletion
as fast as the BSD radix with less memory consumption.
This paper also describes the path compression technique.
The algorithms of ART are in the public domain. The au-
thor’s ART implementations and an ART implementation
in the KAME IPv6 stack for the BSD kernel are also freely
reusable.

1 Introduction

It is important to develop fast and scalable routing table
algorithms because the size of the Internet routing table
is growing rapidly [1] even after the introduction of the
Classless Inter-Domain Routing (CIDR) [2]. The number
of routes in a core router is almost 100,000 [3] at the time of
this writing. It is known that the multibit trie based [4] rout-
ing tables have a very low and deterministic search cost. In
particular, techniques called Controlled Prefix Expansion

This work was performed while the author was with MAYAN Net-
works, Corp., San Jose, CA

(CPE) [6] and Smart Multi-Array Routing Table (SMART)
[7] are easy to implement as software since their algorithms
are pretty simple. The problem is that the CPE is patented
[5] and the SMART is patent pending so that no one can
use them without licensing.

This paper describes a new routing table algorithms
called Allotment Routing Table (ART). The ART is a freely
usable multibit trie based routing table.

2 Algorithms

2.1 Single Level

Assume the address length is 4 bits. We need a single level
array to make an ART routing table in this case. It is easy
to extend the single level algorithms to the multi-level al-
gorithms that support arbitrary address length. Section 2.2
describes the multi-level algorithms.

Table 1 shows all the possible 31 prefixes in this case.

Table 1: 4-BIT ADDRESS LENGTH PREFIXES

0/0 0/4 3/4 5/4 8/1 9/4 12/2 14/3
0/1 1/4 4/2 6/3 8/2 10/3 12/3 14/4
0/2 2/3 4/3 6/4 8/3 10/4 12/4 15/4
0/3 2/4 4/4 7/4 8/4 11/4 13/4

Here, the left hand side of ‘/’ represents the destination ad-
dress and the right hand side of ‘/’ represents the prefix
length, respectively. Note that some destination addresses
can have different prefix lengths. For example, destination
address 8 can have prefix length 1, 2, 3, or 4.

Now let us apply the following mapping function to each
prefix:

baseIndex(w, a, l)
return (a� (w − l)) + (1 � l)

Here, w is the address length in bit, a is the address, and l is
the corresponding prefix length, respectively. For example,

w = 4, a = 8, and l = 1 for prefix 8/1. Let us call the return
value of baseIndex() base index. Figure 1 illustrates the
operation of baseIndex().

0100 00101

prefix length (2)

address (4) base index (5)

add ‘1’ to the right end

Figure 1: Operation of baseIndex()

Table 2 shows all the prefixes and their base indices.

Table 2: PREFIX (P) AND BASE INDEX (B)

P B
0/0 1
0/1 2
8/1 3
0/2 4
4/2 5
8/2 6

12/2 7
0/3 8

P B
2/3 9
4/3 10
6/3 11
8/3 12

10/3 13
12/3 14
14/3 15
0/4 16

P B
1/4 17
2/4 18
3/4 19
4/4 20
5/4 21
6/4 22
7/4 23
8/4 24

P B
9/4 25

10/4 26
11/4 27
12/4 28
13/4 29
14/4 30
15/4 31

baseIndex() is one of two keys of the ART. Table 2
shows that all the possible route pointers can be stored in
an array using a base index as an array index. At the same
time, this array also forms a complete binary tree as shown
in Figure 2. In other words, baseIndex() maps all the pos-
sible prefixes into a complete binary tree [8].

16
0/4

17
1/4

18
2/4

19
3/4

20
4/4

21
5/4

22
6/4

23
7/4

24
8/4

25
9/4

26
10/4

27
11/4

28
12/4

29
13/4

30
14/4

31
15/4

8
0/3

9
2/3

10
4/3

11
6/3

12
8/3

13
10/3

14
12/3

15
14/3

4
0/2

5
4/2

6
8/2

7
12/2

2
0/1

3
8/1

1
0/0

Figure 2: All prefixes mapped into complete binary tree

Let X be an array pointer and b a base index, respec-
tively. It is important to note that X[b � 1] always points
to the next most specific route of X[b] if it exists in Figure
2. This characteristics contributes to the deletion perfor-
mance of ART.

Let r be a route pointer, r→a be the destination address
of the route, r→l be the corresponding prefix length, re-
spectively. Note that the bottom indices of the complete
binary tree represent all the possible host routes in the ad-
dress space. Let us call the bottom indices of the complete
binary tree fringe indices. For example, indices 16..31 are
fringe indices in Figure 2. When address a (0..15) is given,
the corresponding fringe index is obtained by the following
function:

fringeIndex(w, a)
return baseIndex(w, a, w).

Here, w is the address length (w = 4 in this example).
All the addresses (0..15) have the one-to-one mapping re-
lationship with the corresponding fringe indices.

Inserting a route to the ART is equal to allotting a new
route pointer to the corresponding base index and all of its
child indices that do not have route pointers to more spe-
cific routes (see Fig. 3). As the result of insertion, the
new route pointer is also alloted to the fringe indices corre-
sponding to all the possible addresses of the new route as
long as those fringe indices do not point to more specific
routes than the new route.

That is why the route lookup function of the single level
ART is as simple as follows:

lookup s(X, w, a)
return X[fringeIndex(w, a)].

Deleting a route pointed to by route pointer r from the ART
is equal to allotting the next most specific route pointer to
the indices whose value is r.

Function allot() in Algorithm 1 is another key of the
ART. It allots a new route pointer r to base index b and
all the child indices of b that have route pointer q.

Note that function allot() does not visit further child in-
dices when the value of an index is not equal to q since
it means that there is at least one more specific route than
the route pointed to by q. This feature prevents redundant
checking and increases the insertion and deletion perfor-
mance.

Algorithm 1: Allotting route r (recursive)
Input: array pointer: X, smallest fringe index in X: t,
base index b, old route pointer: q, new route pointer: r
Output:
allot(X, t, b, q, r)
(1) if X[b] = q then X[b] = r else return
(2) if b ≥ t then return /* b is a fringe index */
(3) b← b � 1
(4) allot(X, t, b, q, r) /* Allot r to left children */
(5) ++b
(6) allot(X, t, b, q, r) /* Allot r to right children */

Section 2.1.1, 2.1.2, and 2.1.3 give the examples and the
algorithms of insertion, search, and deletion, respectively.

2.1.1 Insertion

Algorithm 2 shows the insertion algorithm for the single
level ART.

Algorithm 2: Insertion algorithm (single level)
Input: array pointer: X, address length: w, address: a,
prefix length: l, route pointer: r
Output: true if successful, false otherwise
insert s(X, w, a, l, r)
(1) b← baseIndex(w, a, l)
(2) if r→a = X[b]→a and r→l = X[b]→l then
(3) return false /* Already occupied */
(4) endif
(5) allot(X, 1 � w, b, X[b], r)
(6) return true

Let us see how the ART insertion algorithm works with
examples. Assume there is no routes in the ART and we
insert a route to prefix 12/2. The insertion process is as
follows:

1. insert s() is called as insert s(X, 4, 12, 2, 12/2).

2. insert s() calls allot() as allot(X, 16, 7,Λ, 12/2).

3. allot() allots route pointer 12/2 to index 7 and all of its
child indices (14, 15, and 28..31).

Here, Λ means NULL pointer. Figure 3-1 shows the ART
after the route to prefix 12/2 is inserted. Now assume we
insert a route to prefix 14/3. The insertion process is as
follows:

1. insert s() is called as insert s(X, 4, 14, 3, 14/3)

2. insert s() calls allot() as allot(X, 16, 15, 12/2, 14/3)

3. allot() sets X[15] to 14/3 since X[15] = 12/2.

4. allot() visits the left child of index 15, which
means that allot() calls itself recursively as
allot(X, 16, 30, 12/2, 14/3). The recursive call
sets X[30] to 14/3 and returns since index 30 is a
fringe index.

5. allot() visits the right child of index 15, which
means that allot() calls itself recursively as
allot(X, 16, 31, 12/2, 14/3). The recursive call
sets X[31] to 14/3 and returns since index 31 is a
fringe index.

Figure 3-2 shows the ART after the route to prefix 14/3 is
inserted. Now assume we insert a route to prefix 8/1. The
insertion process is as follows:

1. insert s() is called as insert s(X, 4, 8, 1, 8/1)

2. insert s() calls allot() as allot(X, 16, 3,Λ, 8/1)

3. allot() sets X[3] to 8/1 since X[3] = Λ.

4. allot() visits the left child of index 3, which means that
allot() calls itself recursively as allot(X, 16, 6,Λ, 8/1).
The recursive call eventually allots route pointer 8/1
to index 6 and all of its child indices (12, 13, 24..17)
since their value is Λ.

5. allot() visits the right child of index 3, which
means that allot() calls itself recursively as
allot(X, 16, 7,Λ, 8/1). The recursive call imme-
diately returns since the value of X[7] is not equal to
Λ(which means that no child indices of index 7 has
value Λ).

Figure 3-3 shows the ART after inserting a route to 8/1.

16
Λ

17
Λ

18
Λ

19
Λ

20
Λ

21
Λ

22
Λ

23
Λ

24
Λ

25
Λ

26
Λ

27
Λ

28
12/2

29
12/2

30
12/2

31
12/2

8
Λ

9
Λ

10
Λ

11
Λ

12
Λ

13
Λ

14
12/2

15
12/2

4
Λ

5
Λ

6
Λ

7
12/2

2
Λ

3
Λ

1
Λ

(1)
12/2

(2)
12/2, 14/3

(3)
8/1, 12/2, 14/3

16
Λ

17
Λ

18
Λ

19
Λ

20
Λ

21
Λ

22
Λ

23
Λ

24
Λ

25
Λ

26
Λ

27
Λ

28
12/2

29
12/2

30
14/3

31
14/3

8
Λ

9
Λ

10
Λ

11
Λ

12
Λ

13
Λ

14
12/2

15
14/3

4
Λ

5
Λ

6
Λ

7
12/2

2
Λ

3
Λ

1
Λ

16
Λ

17
Λ

18
Λ

19
Λ

20
Λ

21
Λ

22
Λ

23
Λ

24
8/1

25
8/1

26
8/1

27
8/1

28
12/2

29
12/2

30
14/3

31
14/3

8
Λ

9
Λ

10
Λ

11
Λ

12
8/1

13
8/1

14
12/2

15
14/3

4
Λ

5
Λ

6
8/1

7
12/2

2
Λ

3
8/1

1
Λ

Note: A prefix (e.g., 12/2) represents a route pointer to the prefix

Figure 3: ART route insertion example

2.1.2 Search

Algorithm 3 shows the search algorithm for the single level
ART.

Algorithm 3: Search algorithm (single level)
Input: array pointer: X, address length: w, address a
Output: Matched route pointer
lookup s(X, w, a)
(1) return X[fringeIndex(w, a)]

In this example, Algorithm 3 becomes as follows:

lookup s(X, 4, a)
return X[16 + a].

That is why lookup s() returnsΛwhen a is 0..7, 8/1 when a
is 8..11, 12/2 when a is 12..13, and 14/3 when a is 14..15,
respectively.

2.1.3 Deletion

Algorithm 4 shows the deletion algorithm for the single
level ART.

Algorithm 4: Deletion algorithm (single level)
Input: array pointer: X, address length: w, address: a,
prefix length: l
Output: Deleted route pointer if successful,
Λotherwise
delete s(X, w, a, l)
(1) b← baseIndex(w, a, l)
(2) if X[b] = Λ then
(3) return Λ /* No such route */
(4) endif
(5) allot(X, 1 � w, b, X[b], X[b� 1])
(6) return r

When route pointer r (whose associated base index is b) is
deleted, the value of indices in which r is stored must be
replaced with the route pointer that points to the next most
specific route. This process is necessary for all the multibit
trie based routing tables. In the ART, the next most specific
route can be always obtained with one memory access since
it is stored in X[b � 1]. In addition, deleting the route
pointed to by r from the ART is equal to allotting X[b� 1]
to the indices whose value is r.

Let us see how the ART deletion algorithm works with
an example. Assume the route to prefix 12/2 is deleted from
the ART in Figure 3-3. The deletion process is as follows:

1. delete s() is called as delete s(X, 4, 12, 2).

2. delete s() calls allot() as allot(X, 16, 7, 12/2, 8/1).

3. allot() sets X[7] to 8/1 since X[7] = 12/2.

4. allot() visits the left child of index 7, which
means that allot() calls itself recursively as
allot(X, 16, 14, 12/2, 8/1). The recursive call
eventually allots route pointer 8/1 to index 14 and all
of its child indices (28, 29) since their value is 12/2.

5. allot() visits the right child of index 7, which
means that allot() calls itself recursively as
allot(X, 16, 15, 12/2, 8/1). The recursive call im-
mediately returns since the value of X[15] is not equal
to 12/2 (which means that no child indices of index
15 has value 12/2).

After the route to 12/2 is deleted, the ART returns to Figure
3-2.

2.2 Multiple Levels

The single level ART described in Section 2.1 requires an
array that has 2w+1 indices to support address length w.
For example, an array that has 232+1 indices is necessary
to build a single level ART for IPv4, which is not feasible.
This problem can be solved by splitting the single address
into multiple short addresses. Let us call the split addresses
strides. This operation converts a single array into a multi-
bit trie wherein a stride becomes a search key at each level.
Let si be the stride length at level i (i.e., w =

∑
si).

Now let us see how it works for IPv4 with an example.
An IP address can be split into 4 strides each of whose
stride length is 8 bits. Figure 4 shows a multi-level ART
with routes to 10/14, 10.1/16, 10.1.2/23, and 11.1.2.2/31.

In the multi-level ART, each array element has a child
array pointer (say pn) in addition to a route pointer (say
pr). Let Xn[i] be index i of array X at level n. If Xn[i].pn
is not equal to Λ, a child array is connected to index i
and there are one or multiple of more specific routes in
the descendent array(s). Function allot(), baseIndex(),
and f ringeIndex() described in Section 2.1 are applicable
to the multi-level ART with no change. The multi-level
ART insertion algorithm allocates new arrays if necessary
and calls insert s(); likewise the deletion algorithm calls
delete s() and frees arrays if necessary. There is one thing
to consider when extending the single level search to sup-
port multiple levels; there may be the longest matching pre-
fix even when the value of pr at a fringe index isΛ. Assume
IPv4 address 10.1.4.5 is given to search the ART in Figure
4. The search ends at index 256+4 in the level 2 array that
has route pointers to 10.1.2/23. The value of index 256+4
is Λ, but the longest matching prefix to 10.1.4.5 is 10.1/16.
That is why the multi-level lookup function must remember
the value of pr unless it is Λ each time it visits a child ar-
ray. Algorithm 5, 6, and 7 show the insertion, deletion, and
search algorithms for the multi-level ART. In Algorithm 5,
6, index 0 is used as a reference counter that contains the
number of pr and pn in the array since the ART does not

use index 0. Note that the multi-level ART does not use in-
dex 1, either. This is because a route associated with index
1 is stored in the parent array.

256+10 Λ

10.1/16
256+0 10/14
256+1

10.1.2/23
256+2
256+3

256+11 Λ

Λ256+1

Λ256+2

256+2 11.1.2.2/31
256+3

10.1.2/23

11.1.2.2/31

level 0

level 1
(10.*.*.*)

level 1
(11.*.*.*)

level 2
(10.1.*.*)

level 2
(11.1.*.*)

level 3
(11.1.2.*)

pr pn

pr pn

pr pn

pr pn

pr pn

pr pn

IPv4 address

Λ

Λ
Λ

Λ
Λ

129 10.1.2/23 Λ
10/14256+2 Λ
10/14256+3 Λ

10/14128 Λ

10/1464 Λ

129 11.1.2.2/31 Λ

Λ256+4 Λ

Note: A prefix (e.g., 10/14) represents
a route pointer to the prefix

Figure 4: Multiple level ART for IPv4

Algorithm 5: Insertion algorithm (multi-level)
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, route pointer: r
Output: true if successful, false otherwise
insert(X0, w, sl, r)
(1) Int l← 0 /* level */
(2) Int i /* array index */
(3) Int s /* stride */
(4) Int ss ← 0 /* stride length summation */
(5) Array X ← X0 /* level 0 array */
(6)
(7) if r→a = 0 and r→l = 0 then
(8) if X[1] , Λ then return false
(9) X[1]← r /* default route */
(10) return true
(11)endif

(12)while true
(13) ss ← ss + sl[l]
(14) s← (r→a � (w − ss))&((1� sl[l]) − 1)
(15) if r→l ≤ ss then break
(16) i = fringeIndex(sl[l], s)
(17) if X[i].pn = Λ then
(18) X[i].pn← New Array /* array allocation */
(19) X[0].pn← X[0].pn + 1 /* ref. counter */
(20) endif
(21) X ← X[i].pn
(22) l← l + 1
(23)endwhile
(24)
(25)ss ← ss − sl[l]
(26)if insert s(X, sl[l], s, r→l − ss, r) = true then
(27) X[0].pn← X[0].pn + 1 /* new route entry */
(28) return true
(29)endif
(30)return false

Algorithm 6: Deletion algorithm (multi-level)
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, destination address: a,
corresponding prefix length: pl
Output: true if successful, false otherwise
delete(X0, w, sl, a, pl)
(1) Array X ← X0 /* level 0 array */
(2) Array Xsv[0]← X /* parent array pointers */
(3) Int ss ← 0 /* stride length summation */
(4) Int s /* stride */
(5) Int l← 0 /* level */
(6) Int i← 0 /* index */
(7) Int isv[] /* parent indices */
(8) RoutePointer r
(9)
(10)if a = 0 and pl = 0 then
(11) if X0[1].pr = Λ then return false
(12) X0[1].pr← Λ
(13) Return X0[1].pr
(14)endif
(15)
(16)while true
(17) ss ← ss + sl[l]
(18) s← (r→a � (w − ss))&((1� sl[l]) − 1)
(19) if pl ≤ ss then break
(20) i = fringeIndex(sl[l], s)
(21) isv[l] = i
(22) if X[i].pn = Λ then return false
(23) Xsv[l] = X
(24) X ← X[i].pn
(25) l← l + 1
(26)endwhile

(27)ss ← ss − sl[l]
(28)r ← delete s(X, sl[l], s, pl − ss)
(29)if r = Λ then return false
(30)
(31)/* Free array(s) if necessary */
(32)X[0].pn← X[0].pn − 1
(33)if l > 0 and X[0].pn = 0 then
(34) while true
(35) Free X /* free current array */
(36) l← l − 1 /* get parent level */
(37) X ← Xsv[l] /* get parent array pointer */
(38) /* child array is deleted */
(39) X[0].pn← X[0].pn − 1
(40) if l ≤ 0 or X[0].pn > 0 then
(41) return r
(42) endif
(43) endwhile
(44)endif
(45)return r

Algorithm 7: Search algorithm (multi-level)
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, search key address: a
Output: longest prefix matching route pointer or Λ
search(X0, w, sl, a)
(1) RoutePointer lmr ← X0[1].pr
(2) Array X ← X0 /* level 0 array */
(3) Int ss ← 0 /* stride length summation */
(4) Int s /* stride */
(5) Int l← 0 /* level */
(6) Int i← 0 /* index */
(7)
(8) while true
(9) ss ← ss + sl[l]
(10) s← (a � (w − ss))&((1� sl[l]) − 1)
(11) i = fringeIndex(sl[l], s)
(12) if X[i].pn , Λ then
(13) /* update current longest matching route */
(14) if X[i].pr , Λ then lmr = X[i].pr
(15) X ← X[i].pn
(16) l← l + 1
(17) else if X[i].pr , Λ then
(18) return X[i].pr
(19) else
(20) return lmr /* pr = pn = Λ */
(21) endif
(22)endwhile

3 Optimizations

This section discusses some optimization techniques to re-
duce memory usage and to increase insertion/deletion per-
formance that the author’s ART implementation [11] uses.

These techniques are generic enough to apply to any multi-
bit tries.

3.1 Element Consolidation

The data structure described in Section 2.2 has two pointers
(pr and pn) per array element. These pointers can be stored
in a single location as shown in Figure 5.

0

this element points to a route (pr)0
1 this element points to the child array (pn)

Figure 5: Consolidated element

The data structure in Figure 5 is based on the assumption
that neither a route entry nor an array starts at an odd ad-
dress. This technique reduces the array size to half. It is
possible that both pr and pn exist in the same index. For
example, index 256+1 of a level 1 array in Figure 4 has
route pointer to 10.1/16 and child array pointer. In such a
case, pr is stored in index 1 of the child array (Figure 6).
Remember index 1 is not used.

without element consolidation

256+1 10.1/16

level 2

pr pn
256+1 10.1.1/24

level 3

pr pn

Λ

with element consolidation

256+1

level 2

256+1 10.1.1/24

level 3

10.1/161

Figure 6: Routes to 10.1/16 and 10.1.1/24 in ART

The algorithms that support element consolidation are
shown in Appendix A.

3.2 Path Compression

Path compression is a well-known trie compression tech-
nique. The idea is to remove arrays that have only one child
array pointer (Figure 7). Let us call such an array transit
array. A path compressed binary trie is often referred to as
Patricia trie [9].

Path Compression reduces memory usage and increases
search performance in some cases, but not always. It de-
pends on the prefix length distribution, address length, and

without path compression

256+11
256+1

256+2

256+2 11.1.2.2/31
256+3 11.1.2.2/31

level 0

level 1

level 2

level 3

129 11.1.2.2/31

with path compression

256+11

level 0

256+2 11.1.2.2/31
256+3 11.1.2.2/31

level 3

129 11.1.2.2/31

Figure 7: Path compression

the path length. Another drawback of path compression is
that it is necessary to compare the search key with the key
in the matched entry after a match is found. Assume IPv4
address 11.20.20.3 is given to search the path compressed
ART in Figure 7. The search successfully ends at index
256+3 of the level 3 array since both level 0 and 3 fringe
indices of 11.20.20.3 are the same as those of 11.1.2.2/31.
However, 11.1.2.2/31 is not the correct destination prefix
to 11.20.20.3. That is why it is necessary to compare two
addresses after a match is found. This overhead becomes
negligible if a path is long enough and there are many tran-
sit arrays in the path. On the other hand, this overhead
slows down the search performance when a path is short or
the number of transit arrays in the path is small. Section
4 shows how much path compression is effective for IPv4

and IPv6.

The ART algorithms with path compression is not shown
in this paper for the space reason, but the entire source code
can be obtained from [11].

3.3 Avoiding Recursion

Function allot() is one of two keys of the ART and it uses
recursion. Changing the allot() algorithm from recursion
to loop increases insertion and deletion performance. Al-
gorithm 8 shows a non-recursive version of allot() with el-
ement consolidation.

Algorithm 8: Allotting route r (non-recursive)
Input: array pointer: X, smallest fringe index in X: t,
base index: b, old route pointer: q, new route pointer: r
Output:
allot(X, t, b, q, r)
(1) ArrayPointer Y
(2) Int j← b
(3)
(4) if j ≥ t then
(5) if (X[b]&1) = 1 then
(6) Y ← X[b]&(∼1)
(7) if Y[1] = q then Y[1]← r
(8) else if X[b] = q then
(9) X[b]← r
(10) endif
(11) return
(12)endif
(13)
(14) startChange:
(15) j← j � 1
(16) if j < t then goto nonFringe
(17) /* Handle fringe indices */
(18) while true
(19) if (X[b]&1) = 1 then
(20) Y ← X[b]&(∼1)
(21) if Y[1] = q then Y[1]← r
(22) else if X[b] = q then
(23) X[b]← r
(24) endif
(25) if (j&1) = 1 then goto moveUp
(26) j ← j + 1
(27) endwhile
(28)
(29) nonFringe:
(30) if X[j] = q then goto startChange

(31) moveOn:
(32) if (j&1) = 1 then goto moveUp
(33) j← j + 1
(34) goto nonFringe
(35) moveUp:
(36) j← j >> 1
(37) X[j]← r /* Handle non-fringe node */
(38) if j , b then goto moveOn

4 Measurements and Comparison

This section describes the performance of the ART by sim-
ulations. The simulations are performed on a Pentium III
1GHz CPU running Linux 2.1.14. The routing table used
for IPv4 simulations is a combination of the MAE East
routing table (42,366 routes on Aug. 17, 1999) [10] and
4,000 randomly generated routes whose prefix lengths are
longer than 24. This is because the longest prefix length for
inter-AS routes like stored in the MAE East routing table
is 24 (Figure 8). However, the routing tables in large ISPs
have both inter-AS routes and intra-AS routes. Hence, it is
better to use the routing table that has both types of routes.

Prefix Length

0

1000

2000

3000

4000

5000

6000

7000

8000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

22000

N
um

be
r

of
 R

ou
te

s

Figure 8: Route distribution of MAE East (8/17/1999)

The routing table used for IPv6 simulations is generated
from the MAE East routing table as follows:

1. TLA ID: a 13-bit random number

2. NLA ID: leading 24-bit of an IPv4 address

3. prefix length: 24 + prefix length of the corresponding
IPv4 address

This is the hardest condition from the point of view of the
size of routing table. In IPv6, the leading 48 bits are used
for routing among and within ISPs [12]. That is why there
is no need to look up more than 48 bits.

The source code and prefix data used in this section can
be obtained from [11].

4.1 IPv4 Performance

Table 3 shows the IPv4 performance comparison among the
ART that supports single stride length distribution which is
16 bits for level 0, 8 bits for level 1 and 2 (say 16-8-8),
the ART that supports arbitrary stride length distribution
(and configured to the 16-8-8 stride length distribution),
SMART, CPE, and BSD radix [13]. Both ART implemen-
tations use element consolidation.

Table 3: PERFORMANCE COMPARISON

Insertion Deletion Search
(K routes/s) (K routes/s) (M lookups/s)

ART-16-8-8 800 2041 10.00
ART 794 758 6.25
SMART 900 943 6.25
CPE 943 676 5.55
BSD Radix 544 515 0.63

All the routing tables except BSD Radix has the 16-8-8 stride
length distribution. ART-16-8-8 supports only 16-8-8 stride
length distribution. ART, SMART, and CPE support arbitrary
stride length distribution and configured to 16-8-8. Random IP
addresses are used for search after 46,366 routes are inserted.

ART-16-8-8 has the best performance since it is specially
tuned for the fixed stride length distribution so that it does
not have any loop. The search performance of ART is com-
parable to SMART and CPE. The reason ART has lower
insertion performance compared to SMART and CPE is
that the ART insertion algorithm requires more number
of memory writes to an array compared to the other two.
CPE has the least deletion performance among three be-
cause of its overhead of finding the next most specific route.
SMART has better deletion performance than ART because
the SMART deletion algorithm requires less number of
memory writes than that the ART deletion algorithm.

Table 4: MEMORY CONSUMPTION (MB)

ART-16-8-8 ART SMART CPE BSD Radix
17.07 17.07 17.42 17.67 5.54

CPE uses almost the same amount of memory as ART
and SMART even though it theoretically requires half
amount of memory compared to ART and SMART. This
is because CPE does not use element consolidation (paper
[6] does not mention it either).

4.2 Stride Length Distribution and Perfor-
mance

4.2.1 IPv6

Figures 9 to 12 show the simulation results about stride
length distribution and performance for IPv6. The theo-
retical worst case cost of insertion and deletion is mainly
controlled by the maximum stride length. The actual per-
formance however depends on the prefix length distribution
of the routing table. As for the IPv6 routing table used in
this paper, more than 60% of the routes in the routing table
has prefix length 48.

The insertion performance increases as the stride length
decreases up to some point (20-4x7 for simple trie, 16-4x8
for path compressed trie) and decreases after that. It means
that the stride length for the /48 prefixes is the main factor
at first, then the cost of following a path becomes the main
factor. The insertion performance of a path compressed trie
is higher than that of a simple trie, particularly when the
path length becomes longer. This is because a path com-
pressed trie usually allocates only one array at insertion.
On the other hand, simple trie may have to allocate multi-
ple arrays at insertion.

The deletion performance of a simple trie sharply de-
creases as the number of strides grows. This suggests that
the number of routing table accesses at deletion increases
as the number of strides grows, which means that the pre-
fix length within an array becomes longer as the number
of strides grows. The deletion performance of a path com-
pressed trie also decreases as the number of strides grows,
but the degree of decrease is modest. This suggests that the
path length factor also contributes to the deletion perfor-
mance.

The search performance of a path compressed trie is rel-
atively independent from the number of strides. The search
performance of a simple trie is also relatively independent
from the number of strides up to 24-4x8, but it decreases as
the number of strides grows after that. These results are un-
derstandable as the characteristics of path compressed trie
and simple trie.

The memory consumption of both tries exponentially de-
creases as the number of stride length increases. One ex-
ception is 24-4x6 because level 0 array of 24-4x6 requires
128MB of memory. The memory consumption of a pass
compressed trie is half as large as that of a simple trie when
the stride length of level 0 array is not 24.

The simulation results show that a path compressed trie
is better than a simple trie in all aspects for IPv6.

300

400

500

600

700

800

900

24
-8

x3

16
-8

x4

18
-6

x5

24
-4

x6

20
-4

x7

16
-4

x8

12
-4

x9

8-
4x

10

In
se

rt
io

n
(K

ro
ut

es
/s

ec
)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 9: SLD vs. performance (insertion)

300

350

400

450

500

550

600

24
-8

x3

16
-8

x4

18
-6

x5

24
-4

x6

20
-4

x7

16
-4

x8

12
-4

x9

8-
4x

10

D
el

et
io

n
(K

ro
ut

es
/s

ec
)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 10: SLD vs. performance (deletion)

0

0.5

1

1.5

2

2.5

3

24
-8

x3

16
-8

x4

18
-6

x5

24
-4

x6

20
-4

x7

16
-4

x8

12
-4

x9

8-
4x

10

S
ea

rc
h

(M
lo

ok
up

s/
se

c)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 11: SLD vs. performance (search)

0

50

100

150

200

250

300

24
-8

x3

16
-8

x4

18
-6

x5

24
-4

x6

20
-4

x7

16
-4

x8

12
-4

x9

8-
4x

10

M
em

or
y

C
on

su
m

pt
io

n
(M

B
 fo

r
42

27
1

ro
ut

es
)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 12: SLD vs. memory consumption

4.2.2 IPv4

Figures 13 to 16 show the simulation results about stride
length distribution and performance for IPv4. The simula-
tion results show that a path compressed trie does not have
any advantage to a simple trie in all aspects for IPv4. Actu-
ally the simple trie shows better performance in some cases.
It means that the effect of pass compression highly depends
on the address length.

The memory consumption of both tries exponentially de-
creases as the number of stride length increases in IPv4 as
well as IPv6. Please note that the simple trie with the 8-4x6
stride length distribution still has 3.8 Mlookups/sec search
performance, which is 6 times faster than BSD radix, with
less memory consumption.

0

200

400

600

800

1000

1200

1400

24
-8

16
-8

x2

8-
8x

3

8-
6x

4

7-
5x

5

8-
4x

6

4-
4x

7

In
se

rt
io

n
(K

ro
ut

es
/s

ec
)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 13: SLD vs. performance (insertion)

100

200

300

400

500

600

700

800

900

24
-8

16
-8

x2

8-
8x

3

8-
6x

4

7-
5x

5

8-
4x

6

4-
4x

7

D
el

et
io

n
(K

ro
ut

es
/s

ec
)

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 14: SLD vs. performance (deletion)

0

1

2

3

4

5

6

7

S
ea

rc
h

(M
lo

ok
up

s/
se

c)

24
-8

16
-8

x2

8-
8x

3

8-
6x

4

7-
5x

5

8-
4x

6

4-
4x

7

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 15: SLD vs. performance (search)

0

20

40

60

80

100

120

140

M
em

or
y

C
on

su
m

pt
io

n
(M

B
 fo

r
46

,3
66

 r
ou

te
s)

24
-8

16
-8

x2

8-
8x

3

8-
6x

4

7-
5x

5

8-
4x

6

4-
4x

7

Stride Length Distribution (SLD)

Path Compression
Simple Trie

Figure 16: SLD vs. memory consumption

5 Conclusion

This paper presented a multibit trie based routing table
called ART. This paper showed that the ART has good per-
formance for all three routing table operations with both
theory and simulation. This paper also showed that for
IPv6, path compression reduces memory consumption and
improves the performance of all three routing table oper-
ations, and for IPv4, it does not have any advantages to
all three routing table operations. The ART algorithms are
freely usable. There are two free ART implementations
available at the time of this writing. The one is used for
the simulations in this paper. It supports arbitrary address
length and prefix length distribution. The other is used in
the KAME IPv6 protocol stack for BSD kernels.

Acknowledgement

The ART was invented by Donald E. Knuth while he was
reviewing author’s paper [7]. The author would like to
thank Professor Knuth for allowing the author to write a pa-
per about his invention. The author would also like to thank
Dr. Steve Deering for his suggestion to add path compres-
sion, Immanuel Rahardja, Dr. Jun-ichiro “itojun” Hagino,
and Kenji Rikitake for their useful comments on this pa-
per. Lastly, the author would like to thank Cisco Systems,
particularly Dr. John Wakerly who allowed the author to
publish this paper.

References

[1] Scott Marcus, IPv4 Address Space Allocation
and Usage Trends, http://www.nanog.org/mtg-
0105/ppt/marcus.ppt.

[2] V. Fuller, T. Li, J. Yu, and K. Varadhan, Classless Inter-
Domain Routing (CIDR), RFC1519, September 1993.

[3] Merit Networks, Inc., Internet Routing Trends
http://www.telstra.net/ops/bgptable.html

[4] D. Knuth, The Art of Computer Programming Vol.3,
Addison Wesley, 492-494

[5] V. Srinivasan and George Varghese, Method and ap-
paratus for fast hierarchical address lookup using con-
trolled expansion of prefixes, U.S. Patent 6,011,79

[6] V. Srinivasan and George Varghese, Faster IP Lookups
using Controlled Prefix Expansion, Proceedings of
ACM Sigmetrics, September 98 and ACM TOCS 99.

[7] Yoichi Hariguchi, Smart Multi-Array Routing
Table, Proceedings of INET2001, June 2001.
http://www.isoc.org/inet2001/CD proceedings/7/smart.pdf

[8] D. Knuth, The Art of Computer Programming Vol.3,
Addison Wesley, 144-149.

[9] D. R. Morrison, PATRICIA – practical algorithm to
retrieve information coded in alphanumeric., Journal
of the ACM 15, 1968, 514–534.

[10] Internet Performance Measurement and Analy-
sisProject, Internet Routing Table Statistics,
http://www.merit.edu/ipma/routing table/

[11] Yoichi Hariguchi, ART – Allotment Routing Table –,
http://www.yottanet.com:8080/art/

[12] R. Hinden, M. O’Dell, S. Deering, An IPv6 Aggregat-
able Global Unicast Address Format, RFC2374, July
1998.

[13] FreeBSD 2.2.2, /usr/src/sys/net/radix.[ch].

Appendix

A Algorithms with Element Consolidation

Algorithm 9: Insertion algorithm (single level)
Input: array pointer: X, address length: w, address: a,
prefix length: l, route pointer: r
Output: true if successful, false otherwise
insert s(X, w, a, l, r)
(1) RoutePointer q
(2)
(3) b← baseIndex(w, a, l)
(4) if X[b]&1 = 0 then
(5) q← X[b]
(6) else
(7) q← (X[b]&(∼1))[1]
(8) endif
(9) if r→a = q→a and r→l = q→l then
(10) return false /* Already occupied */
(11)endif
(12)allot(X, 1 � w, b, q, r)
(13)return true

Algorithm 10: Deletion algorithm (single level)
Input: array pointer: X, address length: w, address: a,
prefix length: l
Output: Deleted route pointer if successful,
Λotherwise
delete s(X, w, a, l)
(1) RoutePointer r
(2)
(3) b← baseIndex(w, a, l)
(4) if X[b]&1 = 0 then
(5) r ← X[b]
(6) else
(7) r ← (X[b]&(∼1))[1]
(8) endif
(9) if r = Λ then
(10) return Λ/* No such route */
(11)endif
(12)
(13)allot(X, t, b, r, X[b�1])
(14)return r

Algorithm 11: Insertion algorithm (multi-level)
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, route pointer: r
Output: true if successful, false otherwise
insert(X0, w, sl, r)
(1) RoutePointer q
(2) Int i /* array index */
(3) Int s /* stride */
(4) Int l← 0 /* level */
(5) Int ss ← 0 /* stride length summation */
(6) Array X ← X0 /* level 0 array */
(7)
(8) if r→a = 0 and r→l = 0 then
(9) if X[1] , Λ then return false
(10) X[1] = r /* default route */
(11) return true
(12)endif
(13)
(14)while true
(15) ss ← ss + sl[l]
(16) s← (r→a � (w − ss))&((1� sl[l]) − 1)
(17) if r→l ≤ ss then break
(18) i = fringeIndex(sl[l], s)
(19) if X[i]&1 = 0 then
(20) q = X[i]&(∼1) /* save route pointer */
(21) X[i]← New Array |1 /* array allocation */
(22) (X[i]&(∼1))[1] = q
(23) X[0]← X[0] + 1 /* ref. counter */
(24) endif
(25) X ← X[i]&(∼1)
(26) l← l + 1
(27)endwhile
(28)
(29)ss ← ss − sl[l]
(30)if insert s(X, sl[l], s, r→l − ss, r) = true then
(31) X[0]← X[0] + 1 /* new route entry */
(32) return true
(33)endif
(34)return false

Algorithm 12: Deletion algorithm (multi-level)
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, destination address: a,
corresponding prefix length: pl
Output: true if successful, false otherwise
delete(X0, w, sl, a, pl)
(1) Array X ← X0 /* level 0 array */
(2) Array Xsv[0]← X /* parent array pointers */
(3) Int ss ← 0 /* stride length summation */
(4) Int s /* stride */
(5) Int l← 0 /* level */
(6) Int i← 0 /* index */
(7) Int isv[] /* parent indices */

(8) RoutePointer r
(9)
(10)if a = 0 and pl = 0 then
(11) if X0[1] = Λ then return false
(12) X0[1]← Λ
(13) Return X0[1]
(14)endif
(15)
(16)while true
(17) ss ← ss + sl[l]
(18) s← (r→a � (w − ss))&((1� sl[l]) − 1)
(19) if pl ≤ ss then break
(20) i = fringeIndex(sl[l], s)
(21) isv[l] = i
(22) if (X[i]&1 = 0 then return false
(23) Xsv[l] = X[i]&(∼1)
(24) X ← Xsv[l]
(25) l← l + 1
(26)endwhile
(27)
(28)ss ← ss − sl[l]
(29)r ← delete s(X, sl[l], s,pl - ss)
(30)if r = Λ then return false
(31)
(32)/* Free route entry and arrays */
(33)X[0]← X[0] − 1
(34)if l > 0 and X[0] = 0 then
(35) while true
(36) Free X /* free current array */
(37) l← l − 1 /* get parent level */
(38) X ← Xsv[l] /* get parent array pointer */
(39) /* child array is deleted */
(40) X[0]← X[0] − 1
(41) if l ≤ 0 or X[0] > 0 then
(42) return r
(43) endif
(44) endwhile
(45)endif
(46)return r

Algorithm 13: Search algorithm
Input: level 0 array pointer: X0, address length: w,
stride length array pointer: sl, search key address: a
Output: longest prefix matching route pointer or Λ
search(X0, w, sl, a)
(1) RoutePointer lmr ← X0[1]
(2) Array X ← X0 /* level 0 array */
(3) Int ss ← 0 /* stride length summation */
(4) Int s /* stride */
(5) Int l← 0 /* level */
(6) Int i← 0 /* index */

(7) while true
(8) ss ← ss + sl[l]
(9) s← (a � (w − ss))&((1� sl[l]) − 1)
(10) i = fringeIndex(sl[l], s)
(11) if X[i]&1 = 1 then
(12) /* update current longest matching route */
(13) r ← (X[i]&(∼1))[1]
(14) if r , Λ then lmr = r
(15) X ← X[i]&(∼1)
(16) l← l + 1
(17) else if X[i]&(∼1) = 0 then
(18) return lmr
(19) else
(20) return X[i]
(21) endif
(22)endwhile

B Analysis of Algorithms

The complexity of all three routing table operations is in-
dependent on the number of routes in the ART. Instead, the
complexity of all three depends on the stride length dis-
tribution, which is the maximum stride length (say smax)
and the number of strides (say Ns). The insertion and dele-
tion time mostly depends on the amount of memory access
in allot(). That is why both operations are O(2smax). The
search time is proportional to the number of strides. That is
why the search is O(Ns). Table 5 shows the maximum num-
ber of routing table memory accesses for insertion, dele-
tion, and search.

Table 5: COMPLEXITY OF ART

Insertion Deletion Search
∑smax−1

i=0 2i(= 2smax − 1)
∑smax−1

i=0 2i + 1(= 2smax) 2Ns

No arrays have the routes whose array-local prefix length is
0 in the multi-level ART as described in Section 2.2. That
is why the summation ends at smax − 1. Deletion requires
one more routing table memory access to obtain the next
most specific route pointer in addition to the same number
of memory accesses as insertion. Search requires two rout-
ing memory accesses per level; one is the route pointer ac-
cess, the other is the current longest matching route pointer
access.

